Effect of initial pH control on biological phosphorus removal induced by the aerobic/extended-idle regime.

نویسندگان

  • Dongbo Wang
  • Wei Zheng
  • Dexiang Liao
  • Xiaoming Li
  • Qi Yang
  • Guangming Zeng
چکیده

Recently, it has been reported that biological phosphorus removal (BPR) can be induced by an aerobic/extended-idle (AEI) regime. This study further investigated the effect of initial pH ranging from 6.6 to 8.2 on BPR in the AEI process, and compared the BPR performance between the AEI and the anaerobic/oxic (A/O) regimes under their optimal initial pH value. Experimental results firstly showed that phosphorus removal linearly increased with initial pH increasing from 6.6 to 7.8, but slightly decreased when initial pH increased from 7.8 to 8.2. The optimal initial pH should be controlled at 7.8, and the phosphorus removal at initial pH 7.8 was approximately 1.7-time than that at initial pH 6.6. The mechanism studies showed that the biomass cultured at initial pH 7.8 contained more polyphosphate accumulating organisms (PAOs), lower glycogen accumulating organisms (GAOs), and had higher activities of exopolyphosphatase and polyphosphate kinase than that cultured at initial pH 6.6. Cyclic studies revealed that initial pH control affected the transformations of intracellular polyhydroxyalkanoates and glycogen, which might thereby influence microbial competition between PAOs and GAOs. Then, BPR performance between the AEI and the A/O regimes by adjusting initial pH at 7.8 was also compared. The results showed the AEI regime could drive a better BPR than the generally accepted A/O regime (98% vs 88%). Finally, controlling initial pH at 7.8 to promote BPR in the AEI process was confirmed for a municipal wastewater.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Phosphorus and Nitrogen Removal from Wastewater Using Moving Bed Biofilm Process

In this research, an experimental study to evaluate nutrient removal from synthetic wastewater by a lab-scale moving bed biofilm process was investigated. Also, kinetic analysis of the process with regard to phosphorus and nitrogen removal was studied with different mathematical models. For nutrient removal, the moving bed biofilm process was applied in series with anaerobic, anoxic and aerobic...

متن کامل

Enhancement of post-anoxic denitrification for biological nutrient removal: effect of different carbon sources.

Previous research has demonstrated that post-anoxic denitrification and biological nutrient removal could be achieved in the oxic/anoxic/extended-idle wastewater treatment regime. This study further investigated the effect of different carbon sources on post-anoxic denitrification and biological nutrient removal. Acetate, propionate (volatile fatty acids (VFAs)), glucose (carbohydrate), methano...

متن کامل

Efficiency of SBR Process with a Six Sequence Aerobic-Anaerobic Cycle for Phosphorus and Organic Material Removal from Municipal Wastewater

Background: Various chemical, physical and biologic treatment methods are being used to remove nitrogen and phosphorus from wastewater. Sequencing batch reactor (SBR) is a modified activated sludge process that removes phosphorus and organic material from sanitary wastewater, biologically. Methods: This study was conducted in 2016.The performance of an aerobic-anaerobic SBR pilot device, locat...

متن کامل

Removal Efficiency of Nitrogen, Phosphorus and Heavy Metal by Intermittent Cycle Extended Aeration System from Municipal Wastewater (Yazd-ICEAS)

Introduction: Sequential batch reactor (SBR) is one of the modified biological treatment systems which is able to remove BOD5, Nitrogen, and phosphorus from wastewater. The object of this study is to determine the removal efficiency of nitrogen, phosphorus, and heavy metals from municipal wastewater by the advanced SBR system. Materials and Methods: This descriptive-analytical and cross-sectio...

متن کامل

Simulation of a novel strategy for improving a biological phosphorus removal system start-up

Albert Guisasola*, Maite Pijuan, Juan A. Baeza, Julián Carrera, Carles Casas, Javier Lafuente Departament of Chemical Engineering, Universitat Autònoma de Barcelona. 08193. Barcelona; Tel: 935811879; Fax: 935812013. Abstract This work analyses (by means of simulation) the effect of reducing the length of the aerobic phase in the start-up of an Enhanced Biological Phosphorus Removal (EBPR) proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 90 8  شماره 

صفحات  -

تاریخ انتشار 2013